Indian Statistical Institute End-Semestral Examination Algebra I November-2017

Max Marks: 100

Answer question 1 and any **five** from the rest.

- 1. Prove or disprove.
 - (a) A group of order 35 is cyclic.

(b) There exists exactly 90 elements of order 7 in a simple group of order 105. (c) If $H \trianglelefteq G$, such that H intersects the commutator subgroup of G trivially, then $H \subseteq Z(G)$.

- (d) The automorphism group of $\mathbb{Z}_2 \times \mathbb{Z}_2$ is \mathbb{Z}_6 .
- (e) S_4 and D_{24} are isomorphic. (6×5)
- 2. (a) Show that the commutator subgroup of a group G is a normal subgroup of G.
 - (b) Show that the commutator subgroup of S_n is A_n , for all $n \ge 3$. (4+10)
- 3. (a) Let G be a group acting on a set X and let x ∈ X. Let Orb(x) denote the orbit of x and G_x denote the stabiliser of x. Show that |Orb(x)| = |G : G_x|.
 (b) Let p be a prime, o(G) = pⁿ for some n ≥ 1 and let G act on a finite set X. Let X₀ = {x ∈ X such that g.x = x ∀g ∈ G} be the fixed point set. Show that |X| ≡ |X₀| mod p. (7+7)
- 4. (a) State Sylow's theorems.
 (b) Let o(G) = pqr where p, q, r are primes with p < q < r. Show that G has a normal Sylow subgroup for either p, q or r.
- 5. Determine the Sylow subgroups of A_5 . (14)
- 6. Let G be a finite abelian group. Show that G is the (internal) direct product of its Sylow subgroups. (14)
- 7. (a) Define (external) semidirect product of two groups H and K.
 (b) Classify all groups of order 12 where the Sylow 3-subgroup is normal.(4+10)

Time: 3 hours.